

Tetrahedron Letters 43 (2002) 487-488

TETRAHEDRON LETTERS

Deprotection of benzylic esters catalysed by anhydrous ferric chloride and rhenium carbonyl compounds

Timothy J. Davies,^a Ray V. H. Jones,^b W. Edward Lindsell,^a Colin Miln^b and Peter N. Preston^{a,*}

^aDepartment of Chemistry, Heriot-Watt University, Riccarton, Edinburgh, EH14 4AS, UK ^bSyngenta, Earls Road, Grangemouth, Stirlingshire, FK3 8XG, UK

Received 3 October 2001; revised 29 October 2001; accepted 8 November 2001

Abstract—Anhydrous ferric chloride and $[Re(CO)_4Br]_2$ are shown to be useful reagents for the catalytic deprotection of benzylic esters. A suitable protecting group is p-MeC₆H₄CH₂ with a working temperature of 50°C for debenzylation. © 2002 Published by Elsevier Science Ltd.

Benzyl esters and -ethers are widely used as protecting groups for carboxylic acids and alcohols, respectively.¹ A common deprotection method is catalytic hydrogenolysis or transfer hydrogenation but these procedures can be problematic with certain multifunctional substrates. Therefore, a variety of alternative strategies are employed, including the use of Lewis acids, e.g. for ester deprotection, AlCl₃ for benzyl,² *p*-methoxybenzyl³ and benzhydryl;³ BCl₃ for benzyl,⁴ and BF₃ for benzhydryl.⁵ For deprotection of mono- and oligosaccharide benzyl ethers,^{6c} anhydrous FeCl₃ has been used. Whilst the conditions for such processes are mild (e.g. from -50^3 to $40^{\circ}C^5$) it should be noted that for ester^{2–5} and ether⁶ deprotection at least 1 mol equiv. and 8–16 mol equiv. of Lewis acid are required, respectively. There is a continuing requirement, particularly for industrialscale processes, for methods in which the Lewis acid functions in a catalytic manner. We now illustrate the use of rhenium carbonyl species [Re(CO)₅X; X=Cl, Br] and [Re(CO)₄Br]₂ in this context, along with a comparative study with anhydrous ferric chloride. Our interest in evaluating transition metal organometallics emanated from a report⁷ of their successful application for catalytic mediation of Friedel–Crafts acylation (e.g.

Table 1. Deprotection of benzylic esters by rhenium carbonyl compounds and ferric chloride

Entry	Substrate	Catalyst ^a	Reaction conditions	Yield of carboxylic acid (%)
1	ClCH ₂ CO ₂ CH ₂ Ph	[Re(CO) ₅ Cl] ^b	Neat/160°C/3 h	Quantitative
2	ClCH ₂ CO ₂ CH ₂ Ph	[Re(CO) ₅ Br] ^b	Decalin ^c /140°C/25 h	Quantitative
3	ClCH ₂ CO ₂ CH ₂ Ph	[Re(CO) ₅ Br] ^b	Mesitylene ^c /130°C/2 h	Quantitative ^d
4	ClCH ₂ CO ₂ CH ₂ C ₆ H ₄ Me-p	[Re(CO) ₅ Br] ^b	Mesitylene ^c /70°C/5 h	Quantitative ^e
5	ClCH ₂ CO ₂ CH ₂ C ₆ H ₄ Me-p	$[Re(CO)_4Br]_2^{f}$	Mesitylene ^c /50°C/24 h	Quantitative ^e
6	PhCO ₂ CH ₂ Ph	$[\text{Re}(\text{CO})_4\text{Br}]_2^{\text{f}}$	Mesitylene ^c /90°C/18 h	Quantitative ^d
7	$3,5-(O_2N)_2C_6H_4CO_2CH_2C_6H_4Me-p$	$[\text{Re}(\text{CO})_4\text{Br}]_2^{\text{f}}$	Mesitylene ^c /90°C/24 h	39°
8	p-HOC ₆ H ₄ CO ₂ CH ₂ C ₆ H ₄ Me-p	$[\text{Re}(\text{CO})_4\text{Br}]_2^{\text{f}}$	Mesitylene ^c /90°C/72 h	82°
9	$3,5-(O_2N)_2C_6H_4CO_2CH_2C_6H_4Me-p$	FeCl ₃	Mesitylene ^c /50°C/48 h	Quantitative
10	p-HOC ₆ H ₄ CO ₂ CH ₂ C ₆ H ₄ Me-p	FeCl ₃	Mesitylene ^c /70°C/24 h	Quantitative

^a The catalyst concentration was 1 mol%.

^b Purchased from Strem chemicals Inc.

^c The substrate:solvent w/w ratio was ca. 1:2-4.

^d 1,3,5-Trimethyl-2[(phenyl)methyl]benzene was also isolated, see Ref. 9.

^e The co-products were mono, bis and tris [*p*-MeC₆H₄CH₂]-substituted mesitylenes in ca. 90:8:2 ratio (GC, MS and NMR analyses).

^f See Ref. 10 for preparative procedure.

Keywords: debenzylation; protecting groups; carboxylic acids; transition metal catalysts.

* Corresponding author. Tel.: +44 (0)131 451 8035; fax: +44 (0)131 451 3180; e-mail: p.n.preston@hw.ac.uk

0040-4039/02/\$ - see front matter @ 2002 Published by Elsevier Science Ltd. PII: S0040-4039(01)02152-9

in 0.05 mol% concentration for the reaction of toluene and benzoyl chloride).

An early experiment in this work (entry 1, Table 1) showed that benzyl chloroacetate was quantitatively deprotected by treating it with $[Re(CO)_5Cl]$ (1 mol%), albeit under forcing conditions; the product was polybenzyl $[C_6H_4CH_2]_n$ which was characterised by spectroscopic comparison (IR, ¹H NMR) with material prepared in our laboratory by oligomerization of benzyl alcohol in conc. H₂SO₄ or anhydrous HF.⁸ Extensive trituration was necessary to extract oligomer-entrapped chloroacetic acid and an improved procedure is to use decalin as solvent (entry 2); in this medium, the suspension of polybenzyl was easily filtered and the carboxylic acid was isolated quantitatively after alkaline extraction.

Mesitylene was then used as a reactive solvent (cf. Ref. 2) to divert the incipient benzyl cation believed to be the source of polybenzyl. The working temperature for deprotection was not significantly decreased (entry 3), but *p*-methylbenzyl chloroacetate was quantitatively cleaved⁹ by $[\text{Re}(\text{CO})_5\text{Br}]$ and $[\text{Re}(\text{CO})_4\text{Br}]_2$ at 70 and 50°C, respectively (entries 4 and 5); the latter brominebridged, binuclear compound dissociates in solution to create more readily a vacant coordination site which is believed to be necessary for catalytic activity in Friedel– Crafts reactions.⁷ Dimeric $[\text{Re}(\text{CO})_4\text{Br}]_2$ was also used to debenzylate benzyl benzoate and related esters (entries 6–8) but a higher temperature was required and the nitro group had a detrimental effect.

Having established the catalytic utility of $[\text{Re}(\text{CO})_4\text{Br}]_2$ we then compared its behaviour with a conventional Lewis acid, viz. anhydrous ferric chloride. Surprisingly, in the light of previous accounts (see earlier) it proved to be an equally effective catalyst (1 mol%) for reactions outlined in entries 1–6 under identical conditions and more effective for those in entries 7 and 8 [quantitative deprotection at 50°C (48 h) and 70°C (24 h), respectively (see entries 9 and 10)].

A brief study of catalytic debenzylation of benzyl phenyl ether in mesitylene was conducted for comparison. Reaction was complete with anhydrous $FeCl_3$ (1 mol%) after 24 h at 50°C but very little reaction occurred using $[Re(CO)_4Br]_2$ under identical conditions.

In summary, anhydrous FeCl_3 and $[\text{Re}(\text{CO})_4\text{Br}]_2$ are useful reagents for catalytic debenzylation of *p*-methylbenzyl-protected carboxylic acids. Furthermore, the latter may prove to be valuable for the selective catalytic deprotection of such esters that also contain a benzylprotected OH group.

Acknowledgements

We thank the EPSRC and Zeneca Agrochemicals (now Syngenta) for an industrial CASE award (to T.J.D.).

References

- (a) Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, 3rd ed.; John Wiley: New York, 1999;
 (b) Jarowicki, K.; Kocienski, P. J. Chem. Soc., Perkin Trans. 1 2000, 2495–2527 and references cited therein.
- Tsuji, T.; Kataoka, T.; Yoshioka, M.; Sendo, Y.; Nishitani, Y.; Hirai, S.; Maeda, T.; Nagata, W. *Tetrahedron Lett.* 1979, 2793–2796.
- Ohtani, M.; Watanabe, F.; Narisida, M. J. Org. Chem. 1984, 49, 5271–5272.
- 4. Schmidt, U.; Kroner, M.; Griesser, H. Synthesis 1991, 294–300.
- Hiskey, R. G.; Smithwick, E. L. J. Am. Chem. Soc. 1967, 89, 437–441.
- (a) Park, M. H.; Takeda, R.; Nakanishi, R. Tetrahedron Lett. 1987, 28, 3823–3824; (b) Kartha, K. P. R.; Dasgupta, F.; Singh, P. P.; Srivastava, H. C. J. Carbohydr. Chem. 1986, 5, 437–444; (c) Rodebaugh, R.; Debenham, J. S.; Fraser-Reid, B. Tetrahedron Lett. 1996, 37, 5477– 5478.
- Kusama, H.; Narasaka, K. Bull. Chem. Soc. Jpn. 1995, 68, 2379–2383.
- Banks, R. E.; François, P.-Y.; Preston, P. N. Polymer 1992, 33, 3974–3975.
- 9. Typical experimental procedure: benzyl chloroacetate (4.86 g, 26.0 mmol), 1,3,5-trimethylbenzene (10 mL) and bromopentacarbonylrhenium (1 mol%) were heated under a nitrogen atmosphere at 130°C for 2 h. The cooled reaction mixture was extracted with aq. NaHCO₃ $(5 \times 10 \text{ mL})$, the residual organic phase was dried (MgSO₄) afford and evaporated to 1,3,5-trimethyl-2[(phenyl)methyl]benzene¹¹ as an oil {¹H NMR: δ (CDCl₃) 2.31 (s, 6H, 2×Me), 2.38 (s, 3H, Me), 4.12 (s, 2H, CH₂), 7.00 (s, 2H, Ar-H), 7.10–7.37 (m, 5H, Ar-H)}. The combined aqueous extract was acidified with dil. HCl and extracted with diethyl ether to give chloroacetic acid in quantitative yield.
- Abel, E. W.; Hargreaves, G. B.; Wilkinson, G. J. Chem. Soc. 1958, 3149–3152.
- 11. Hachiya, I.; Moriwaki, M.; Kobayashi, S. Bull. Chem. Soc. Jpn. 1995, 68, 2053–2060.